Air Pressure Versus Height: 2. Balloon Data
Analyze air pressure data from weather balloons
Image adapted from National Weather Service Forth Worth youtube channel
Weather Balloon Data
Earlier in Air Pressure Versus Height: Smartphone data we learned how to use smartphones to measure air pressure and how these devices are sensitive enough to detect the pressure change from even small changes in height. You can take measurements from your phone as you go up and down a stairwell. You can even attach your phone to a drone! This can be used to obtain pressure measurements as high as about 250 m above the ground, but how would we get pressure measurements from even higher than this? Answer: Weather balloons
How to obtain the data
- Weather balloon data from across the world is freely available to analyze thanks to the National Oceanographic and Atmospheric Administration which has a public database at this link
- It is important to figure out the code name for the weather station near you. For example, Wilmington, Ohio is USM00072426 and Amarillo, Texas is USM00072363. To find a weather station near you, look through this list of US station names with recent data. If you can’t find your city there you may be able to find it in the full list however note that for some cities the latest data available could be decades old which could be a problem because there may not be a height estimate for each pressure reading
- Look for the data for your station on https://www.ncei.noaa.gov/data/integrated-global-radiosonde-archive/access/data-y2d/ You will find a zip file with the name of the station (for example: USM00072363-data-beg2025.txt.zip) Download that file and figure out a way to unzip or extract the file so that it looks like USM00072363-data.txt This file contains many ballon measurements at that location. You only need one measurement!
- Here is what one measurement of pressure versus height looks like
#USM00072363 2025 01 01 00 2306 324 ncdc-nws ncdc-gts 352331 -1017091 21 0 89482B 1095 67B 420 120 92 15 20 7 89005 1139B 60B 362 138 40 29 20 20 88282 1204B 50B 387 129 59 26 20 28 87861 1244B 46B 397 125 60 26 20 45 86986 1325B 37B 418 117 83 26 20 105 85891 1428B 27B 440 110 65 16 20 121 85123 1500B 20B 457 104 70 19 10 123 85000 1512B 19B 460 103 70 20 20 203 82901 1714B 0B 504 90 180 29 20 205 82763 1727B -1B 507 89 185 30 20 220 82001 1800B -8B 527 84 179 14 20 245 80633 1934B -22B 564 75 109 17 20 311 78968 2100B -37B 610 64 136 31 20 325 78244 2172B -43B 633 59 153 26 20 355 76772 2322B -56B 668 52 179 28 20 514 72790 2738B -71B 471 93 241 92 20 529 72108 2811B -70B 449 99 250 111 20 543 71538 2873B -71B 467 94 256 127 10 615 70000 3043B -39B 425 108 273 150 20 621 69732 3074B -39B 411 112 275 151 20 645 68604 3202B -44B 360 127 279 174 20 705 67608 3317B -47B 314 143 273 217 20 717 67080 3379B -49B 306 146 274 225 20 745 65870 3522B -56B 338 133 279 234 20 805 65015 3624B -64B 355 127 279 216 20 824 64302 3710B -70B 363 124 278 212 20 845 63357 3823B -74B 344 129 276 210 20 917 61972 3997B -81B 279 152 271 225 20 925 61636 4039B -84B 283 150 270 230 20 953 60378 4200B -92B 323 134 273 250 20 957 60206 4222B -94B 326 133 274 251 20 1037 58461 4447B -99B 150 216 281 299 20 1105 57281 4605B -106B 158 192 283 352 20 1125 56540 4705B -113B 124 214 283 377 20 1145 55859 4798B -121B 100 232 281 375 20 1225 54432 4995B -136B 72 260 284 387 20 1305 52862 5217B -146B 13 401 287 365 20 1318 52448 5276B -151B 12 402 286 364 ............Many more lines of data!!!............. 20 9705 1100 30177B -500B 11 315 32 85 20 9725 1079 30305B -499B 11 316 25 96 20 9805 1038 30557B -494B 10 319 50 86 10 9843 1000 30804B -490B 10 321 43 83 20 9845 998 30817B -490B 10 321 42 82 20 9905 978 30948B -488B 10 321 51 81 20 9945 939 31214B -486B 10 321 34 103 20 10005 921 31344B -487B 11 320 28 101 20 10025 902 31481B -486B 10 320 30 91 20 10105 867 31744B -486B 10 320 49 88 20 10125 849 31882B -485B 11 319 36 82 20 10127 847 31894B -485B 11 319 35 83 20 10147 830 32030B -485B 11 319 22 91 20 10221 807 32249B -486B 10 320 20 93 30 -9999 -9999 1200 -9999 -9999 -9999 60 26 30 -9999 -9999 1500 -9999 -9999 -9999 65 15 30 -9999 -9999 1800 -9999 -9999 -9999 185 15 30 -9999 -9999 2100 -9999 -9999 -9999 135 36 30 -9999 -9999 2400 -9999 -9999 -9999 185 26 30 -9999 -9999 2700 -9999 -9999 -9999 235 82 30 -9999 -9999 3300 -9999 -9999 -9999 275 216 30 -9999 -9999 3600 -9999 -9999 -9999 280 221 30 -9999 -9999 3900 -9999 -9999 -9999 270 231 30 -9999 -9999 4200 -9999 -9999 -9999 275 247 30 -9999 -9999 4500 -9999 -9999 -9999 285 350 30 -9999 -9999 4800 -9999 -9999 -9999 280 376
We need to extract the third and fourth columns in order to plot the pressure versus height but this is a messy dataset that needs to be cleaned! For example, the fourth and fifth column includes the letter B next to the number which would be very confusing for any spreadsheet program to read in. If you are curious what these symbols mean it is explained in this file
Example data
Here are some examples of cleaned data where the extra symbols have been removed and all the lines that contain -9999 have been removed
What do to with the data
Earlier in Air Pressure Versus Height: Smartphone data we found that the air pressure decreases linearly with height, but we were only looking at data that was within 100 meters of the ground. Does the pressure versus height trendline continue to be linear above 100 meters? What mathematical function does it look like? Try plotting the pressure axis using a “log” scale.